A 65.0-kg bungee jumper steps off a bridge with a light bungee cord tied to herself and to the bridge (Figure P15.22). The unstretched length

Answered step by step
Verified Expert Solution
Question
53 users unlocked this solution today!
A 65.0-kg bungee jumper steps off a bridge with a light bungee cord tied to herself and to the bridge (Figure P15.22). The unstretched length of the cord is 11.0 m. She reaches the bottom of her motion 36.0 m below the bridge before bouncing back. Her motion can be separated into an 11.0-m free fall and a 25.0-m section of simple harmonic oscillation.
(a) For what time interval is she in free fall?
(b) Use the principle of conservation of energy to find the spring constant of the bungee cord.
(c) What is the location of the equilibrium point where the spring force balances the gravitational force acting on the jumper? Note that this point is taken as the origin in our mathematical description of simple harmonic oscillation.
(d) What is the angular frequency of the oscillation?
(e) What time interval is required for the cord to stretch by 25.0 m?
(f) What is the total time interval for the entire 36.0-m drop?

A 65.0-kg bungee jumper steps off a bridge

Figure P15.22

Step by Step Solution

3.44 Rating (157 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Link Copied!

Step: 1

a b c d e f y yvt 11 m 00 t 22 ms 98 m at 98 ms Take the initial po... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

100% Satisfaction Guaranteed-or Get a Refund!

Step: 2Unlock detailed examples and clear explanations to master concepts

blur-text-image_2

Step: 3Unlock to practice, ask and learn with real-world examples

blur-text-image_3

Document Format ( 1 attachment)

Word file Icon

P-M-O-M (22).docx

120 KBs Word File

See step-by-step solutions with expert insights and AI powered tools for academic success

  • tick Icon Access 30 Million+ textbook solutions.
  • tick Icon Ask unlimited questions from AI Tutors.
  • tick Icon Order free textbooks.
  • tick Icon 100% Satisfaction Guaranteed-or Get a Refund!

Claim Your Hoodie Now!

Recommended Textbook for

Physics

Authors: Alan Giambattista, Betty Richardson, Robert Richardson

2nd edition

77339681, 978-0077339685

More Books
flashcard-anime

Study Smart with AI Flashcards

Access a vast library of flashcards, create your own, and experience a game-changing transformation in how you learn and retain knowledge

Explore Flashcards

Students Have Also Explored These Related Oscillations Mechanical Waves Questions!