A consumer electronics firm has developed a new type of remote control button that is designed to
Question:
a. Independent tests reveal that the mean lifetime (in continuous operation) of the best remote control button on the market is 1.200 hours. Letting p be the mean lifetime of the population of all new remote control buttons that will or could potentially be produced, set up the null and alternative hypotheses needed to attempt to provide evidence that the new button's mean lifetime exceeds the mean lifetime of the best remote button currently on the market.
b. Using the previously given sample results, use critical values to test the hypotheses you set up in part a by setting α equal to .10, .05, .01, and .001. What do you conclude lor each value of α?
c. Suppose that = 1,241.2 and s = 110.8 had been obtained by testing a sample of 100 buttons. Use critical values to test the hypotheses you set up in part a by setting α equal to .10. .05. .01, and .001. Which sample (the sample of 35 or the sample of 100) gives a more statistically significant result? That is, which sample provides stronger evidence that Ha is true?
d. If we deline practical importance to mean that μ exceeds 1,200 by an amount that would be clearly noticeable to most consumers, do you think that the result has practical importance? Explain why the samples of 35 and 100 both indicate the same degree of practical importance.
e. Suppose that further research and development effort improves the new remote control button and that a random sample of 35 buttons gives = 1,524.6 hours and s = 102.8 hours. Test your hypotheses of part a by setting α equal to .10, .05, .01, and .001.
(1) Do we have a highly statistically significant result? Explain.
(2) Do you think we have a practically important result? Explain.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Business Statistics In Practice
ISBN: 9780073401836
6th Edition
Authors: Bruce Bowerman, Richard O'Connell
Question Posted: