A random process X (t) is said to be mean square continuous at some point in time
Question:
(a) Prove that X (t) is mean square continuous at time if its correlation function RX, X (t1, t2), is continuous at the point t1 = t, t2 = t.
(b) Prove that if X (t) is mean square continuous at time , then the mean function must be continuous at time
(c) Prove that for a WSS process X (t), if RX, X (Ï) is continuous at Ï = 0, then X (t)is mean square continuous at all points in time.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Probability and Random Processes With Applications to Signal Processing and Communications
ISBN: 978-0123869814
2nd edition
Authors: Scott Miller, Donald Childers
Question Posted: