(a) Table 8.1 lists a number of symmetry properties of the discrete Fourier series for periodic sequences,...

Question:

(a) Table 8.1 lists a number of symmetry properties of the discrete Fourier series for periodic sequences, several of which we repeat here. Prove that each of these properties is true. In carrying out your proofs, you may use the definition of the discrete Fourier series and any previous property in the list. (For example, in proving property 3, you may use properties 1 and 2.)

Periodic Sequence (Period N) DFS Cocfficients (Period N) *(k] 10. *|-n) X.k] = }(X(k] + **(-k) X,k] = }(X[k] – X*l-k

Sequence                                 Discrete Fourier series

1. x*[n]                                                X*[– k]

2. x*[– n]                                             X*[k]

3. Re{x[n]}                                         Xe[k] 

4. jJ m{x [n]}                          X0[k]

(b) From the properties proved in part (a), show that for a real periodic sequence x[n], the following symmetry properties of the discrete Fourier series hold:

1. Re{X[k]} = Re{X[– k]}

2. Jm{X[k]} = − Jm{X[– k]}

3. |X[k]| = |X[– k]|

4. < X[k] = − < X[– k]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Discrete Time Signal Processing

ISBN: 978-0137549207

2nd Edition

Authors: Alan V. Oppenheim, Rolan W. Schafer

Question Posted: