A test for a condition has a high probability of false positives, 20%. Its rate of false

Question:

A test for a condition has a high probability of false positives, 20%. Its rate of false negatives is 10%. The condition is estimated to exist in 65% of all patients sent for screening. If the test is positive, what is the chance the patient has the condition? Suppose that the condition is much more rare in the population-say, Pr (condition) = .30. Given the same testing situation, what is Pr (condition | pos)?
Refer to diagnostic tests. A false negative in a diagnostic test is a test result that is negative even though the patient has the condition. A false positive, on the other hand, is a test result that is positive although the patient does not have the condition?
Use Bayes' theorem to calculate the probabilities?
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Finite Mathematics and Its Applications

ISBN: 978-0134768632

12th edition

Authors: Larry J. Goldstein, David I. Schneider, Martha J. Siegel, Steven Hair

Question Posted: