Although q(x) < 0 in the following boundary-value problems, unique solutions exist and are given. Use the

Question:

Although q(x) < 0 in the following boundary-value problems, unique solutions exist and are given. Use the Linear Shooting Algorithm to approximate the solutions to the following problems, and compare the results to the actual solutions.
a. y" + y = 0, 0 ≤ x ≤ π/4, y(0) = 1, y(π/4) = 1; use h = π / 20; actual solution y(x) = cos x + (√2 − 1) sin x.
b. y" + 4y = cos x, 0 ≤ x ≤ π/4, y(0) = 0, y(π/4) = 0; use h = π/20; actual solution y(x) = −1/3 cos 2x − √2/6 sin 2x + 1/3 cos x.
c. y" = −4x−1y' − 2x−2y + 2x−2 ln x, 1≤ x ≤ 2, y(1) = 1/2, y(2) = ln 2; use h = 0.05; actual solution y(x) = 4x−1 − 2x−2 + ln x − 3/2.
d. y" = 2y' − y + xex − x, 0≤ x ≤ 2, y(0) = 0, y(2) = −4; use h = 0.2; actual solution y(x) = 1/6 x3ex - 5/3 xex + 2ex − x − 2.
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Numerical Analysis

ISBN: 978-0538733519

9th edition

Authors: Richard L. Burden, J. Douglas Faires

Question Posted: