Consider an arbitrary digital filter with transfer function? (a) Perform a two-component polyphase decomposition of H(z) by

Question:

Consider an arbitrary digital filter with transfer function?

(a) Perform a two-component polyphase decomposition of H(z) by grouping the even-numbered samples h0(n) = h(2n) and the odd-numbered samples h1(n) = h(2n +1). Thus show that H(z) can be expressed as:

H(z) = H0(z2) + z?1H1(z2) and determine the H0(z) and H1(z).

(b) Generalized the result in part (a) by showing that H(z) can decomposed into an D-component polyphase filter structure with transfer function, Determine Hk(z).

(c) For the IIR filter with transfer function H(z) = 1/ 1?az?1

Determine H0(z) and H1(z) for the two-component decomposition.

image

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Digital Signal Processing

ISBN: ?978-0133737622

3rd Edition

Authors: Jonh G. Proakis, Dimitris G.Manolakis

Question Posted: