Question: Define F on R3 by F(x) = (0, 0, cx3)x and let M be a compact three-dimensional manifold-with-boundary with MC {x: x3 <0}. The vector

Define F on R3 by F(x) = (0, 0, cx3)x and let M be a compact three-dimensional manifold-with-boundary with MC {x: x3 <0}. The vector field F may be thought of as the downward pressure of a fluid of density in {x: x2 < 0}. Since a fluid exerts equal pressures in all directions, we define the buoyant force on M, due to the fluid, as −∫∂M dA. Prove the following theorem.

Step by Step Solution

3.34 Rating (154 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

The buoyant force on is equal to the weight of the fluid displaced by The de... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

M-C (111).docx

120 KBs Word File

Students Have Also Explored These Related Calculus Questions!