Determine whether the following symbolized arguments are valid or invalid by constructing a truth table for each.
Question:
Determine whether the following symbolized arguments are valid or invalid by constructing a truth table for each.
1. K ⊃ ∼ K / ∼K
2. R ⊃ R / R
3. P ≡ ∼ N / N ∨ P
4. ∼(G ∙ M)
M ∨ G / G
5. K ≡ L
∼(L ∙ ∼ K) / K ⊃ L
6. Z / E ⊃ (Z ⊃ E)
7. ∼(W ∙ ∼ X)
∼(X ∙ ∼W) / X ∨ W
8. C ≡ D
E ∨ ∼D / E ⊃ C
9. A ≡ (B ∨ C)
∼C ∨ B / A ⊃ B
10. J ⊃ (K ⊃ L)
K ⊃ (J ⊃ L) / (J ∨ K) ⊃ L
11. ∼(K ≡ S)
S ⊃ ∼(R ∨ K) / R ∨ ∼S
12. E ⊃ (F ∙ G)
F ⊃ (G ⊃ H) / E ⊃ H
13. A ⊃ (N ∨ Q)
∼ (N ∨ ∼A) / A ⊃ Q
14. G ⊃ H
R ≡ G
∼H ∨ G / R ≡ H
15. L ⊃ M
M ⊃ N
N ⊃ L / L Ȩ N
16. S ⊃ T
S ⊃ ∼ T
∼ T ⊃ S
S ∨ ∼ T
17. W ⊃ X
X ⊃ W
X ⊃ Y
Y ⊃ X / W ≡ Y
18. K ≡ (L ∨ M)
L ⊃ M
M ⊃ K
K ∨ L / K ⊃ L
19. A ⊃ B
(A ∙ B) ⊃ C
A ⊃ (C ⊃ D) / A ⊃ D
20. ∼ A ∨ R
∼(N ∙ ∼ C)
R ⊃ C
C ⊃ ∼ N A ∨ C
21. (G ∨ S) ⊃ S
S ≡ (G ∨ S)
(G ∙ ∼ S) ⊃ ∼ G
(S ∙ ∼ G) ⊃ ∼ S
∼G ∨ ∼ S G ∙ S
22. (Q ∙ E) ⊃ (F ∨ H)
F ⊃ H
H ⊃ E
Q ∙ ∼ F / E ∨ F
23. (N ∙ ∼ T) ≡ K
T ⊃ ∼ K
(N ∨ K) ⊃ T
(K ∙ T) ⊃ N
T ∨ ∼ N / N ⊃ K
24. C ⊃ (P ∨ E)
P ⊃ ∼ C
E ⊃ (C ∙ P)
P ⊃ E
(C ⊃ E) ⊃ P / C ∨ ∼ E
25. D ≡ (R ⊃ J)
J ⊃ ∼ D
D ∨ ∼R
R ⊃ (D ∙ J)
(J ∨ R) ⊃ D / ∼ (R ∨ J)
Step by Step Answer:
A Concise Introduction to Logic
ISBN: 978-1305958098
13th edition
Authors: Patrick J. Hurley, Lori Watson