Question: A function f: R2 R is said to be independent of the second variable if for each x R we have f (x, y1)

A function f: R2 → R is said to be independent of the second variable if for each x € R we have f (x, y1) = f (x, y2) for all y1, y2. €R Show that f is independent of the second variable if and only if there is a function f: R→R such that f(x, y) = g(x). What is f1 (a, b) in terms of g1?

Step by Step Solution

3.46 Rating (159 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

The first assertion is trivial If is independent of the second variable ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

M-C-2.docx

120 KBs Word File

Students Have Also Explored These Related Calculus Questions!