Since the Q- function represents the tail probability of a Gaussian random variable, we can use the
Question:
(a) Use Markov’s inequality to produce an upper bound on the Q- function. Hint: a Gaussian random variable has a two- sided PDF, and Markov’s inequality requires the random variable to be one- sided. You will need to work with absolute values to resolve this issue.
(b) Use Chebyshev’s inequality to produce an upper bound on the Q- function.
(c) Plot your results from parts (a) and (b) along with the bound obtained from the Chernoff bound from Example 4.28. In order to determine how tight (or loose) these various bounds are, also include on your plot the exact value of the Q- function.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Probability and Random Processes With Applications to Signal Processing and Communications
ISBN: 978-0123869814
2nd edition
Authors: Scott Miller, Donald Childers
Question Posted: