Show that the shortest curve that has an area (A) below it is a circular arc, [
Question:
Show that the shortest curve that has an area \(A\) below it is a circular arc,
\[
(\lambda x-c)^{2}+(\lambda y-d)^{2}=1,
\]
as shown in Fig. 14.9. Here \(\lambda\) is a Lagrange multiplier constant and \(c\) and \(d\) are constants of integration. For this constrained problem, \(y(0)=a, y(1)=b\), and \(A=\int_{0}^{1} y(x) d x\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Advanced Mathematics For Engineering Students The Essential Toolbox
ISBN: 9780128236826
1st Edition
Authors: Brent J Lewis, Nihan Onder, E Nihan Onder, Andrew Prudil
Question Posted: