Consider a physical system described by the Lagrangian density [begin{equation*}mathcal{L}=frac{1}{2}left[partial_{mu} phi partial^{mu}phi+partial_{mu} chi partial^{mu} chi-m_{phi}^{2} phi^{2}-m_{chi}^{2} chi^{2}
Question:
Consider a physical system described by the Lagrangian density \[\begin{equation*}\mathcal{L}=\frac{1}{2}\left[\partial_{\mu} \phi \partial^{\mu}\phi+\partial_{\mu} \chi \partial^{\mu} \chi-m_{\phi}^{2} \phi^{2}-m_{\chi}^{2} \chi^{2}\right]-\frac{1}{2} g \chi^{2} \phi-(\lambda / 4 !) \chi^{4} \tag{7.6.115}\end{equation*}
where \(\phi, \chi, m_{\phi}, m_{\chi}, g\) and \(\lambda\) are real.
(a) Calculate \(d \sigma / d \cos \theta\) in the center-of-momentum (CM) frame at tree level for \(\chi \phi \rightarrow \chi \phi\) in terms of CM energy and scattering angle.
(b) Repeat this calculation for \(\chi \chi \rightarrow \chi \chi\) at tree level in the CM frame. Express your answer in terms of the Mandelstam variables \(s, t\) and \(u\).
Step by Step Answer:
Introduction To Quantum Field Theory Classical Mechanics To Gauge Field Theories
ISBN: 9781108470902
1st Edition
Authors: Anthony G. Williams