For each x S, G x is a maximal (proper) subgroup of G. The proof of
Question:
For each x ϵ S, Gx is a maximal (proper) subgroup of G. The proof of this fact proceeds in several steps:
(a) A block of G is a subset T of S such that for each g ϵ G either gT ∩ T = Ø or gT = T, where gT = {gx | x ϵ T}. Show that if T is a block, then |T| divides 7.
(b) If Gx is not maximal, then there is a block T of G such that |T|, ł , contradicting part (a).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Algebra Graduate Texts In Mathematics 73
ISBN: 9780387905181
8th Edition
Authors: Thomas W. Hungerford
Question Posted: