One definition of the Bessel-K function is the integral [ int_{0}^{infty} frac{cos (omega t) d omega}{left(1+omega^{2}ight)^{v+1 /
Question:
One definition of the Bessel-K function is the integral
\[
\int_{0}^{\infty} \frac{\cos (\omega t) d \omega}{\left(1+\omega^{2}ight)^{v+1 / 2}}=\frac{\sqrt{ } \pi}{2^{v} \Gamma(v+1 / 2)} \times|t|^{v} \mathcal{K}_{v}(t)
\]
Deduce that \(\mathcal{K}_{v}(\cdot)\) is symmetric and that
\[
\lim _{t ightarrow 0}|t|^{v} \mathcal{K}_{v}(|t|)=2^{u-1} \Gamma(u) .
\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: