A single-elimination tournament with four players is to be held. A total of three games will be

Question:

A single-elimination tournament with four players is to be held. A total of three games will be played. In Game 1, the players seeded (rated) first and fourth play.

In Game 2, the players seeded second and third play. In Game 3, the winners of Games 1 and 2 play, with the winner of Game 3 declared the tournament winner. Suppose that the following probabilities are given:

P(Seed 1 defeats Seed 4) 5 .8 P(Seed 1 defeats Seed 2) 5 .6 P(Seed 1 defeats Seed 3) 5 .7 P(Seed 2 defeats Seed 3) 5 .6 P(Seed 2 defeats Seed 4) 5 .7 P(Seed 3 defeats Seed 4) 5 .6

a. Describe how you would use a selection of random digits to simulate Game 1 of this tournament.

b. Describe how you would use a selection of random digits to simulate Game 2 of this tournament.

c. How would you use a selection of random digits to simulate the third game in the tournament? (This will depend on the outcomes of Games 1 and 2.)

d. Simulate one complete tournament, giving an explanation for each step in the process.

e. Simulate 10 tournaments, and use the resulting information to estimate the probability that the first seed wins the tournament.

f. Ask four classmates for their simulation results.

Along with your own results, this should give you information on 50 simulated tournaments. Use this information to estimate the probability that the first seed wins the tournament.

g. Why do the estimated probabilities from Parts (e)

and

(f) differ? Which do you think is a better estimate of the true probability? Explain.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: