Let (mathcal{S}) be the disk (x^{2}+y^{2} leq 1) in the (x y)-plane oriented with normal in the

Question:

Let \(\mathcal{S}\) be the disk \(x^{2}+y^{2} \leq 1\) in the \(x y\)-plane oriented with normal in the positive \(z\)-direction. Determine \(\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}\) for each of the following vector constant fields:
(a) \(\mathbf{F}=\langle 1,0,0angle\)
(b) \(\mathbf{F}=\langle 0,0,1angle\)
(c) \(\mathbf{F}=\langle 1,1,1angle\)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Calculus

ISBN: 9781319055844

4th Edition

Authors: Jon Rogawski, Colin Adams, Robert Franzosa

Question Posted: