Let S S be the upper hemisphere x 2 + y 2 + z 2 = 1

Question:

Let SS be the upper hemisphere x2+y2+z2=1,z0x2+y2+z2=1,z0. For each of the functions (a)-(d), determine whether \(\iint_{\mathcal{S}} f d S\) is positive, zero, or negative (without evaluating the integral). Explain your reasoning.
(a) \(f(x, y, z)=y^{3}\)
(b) \(f(x, y, z)=z^{3}\)
(c) \(f(x, y, z)=x y z\)
(d) \(f(x, y, z)=z^{2}-2\)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Calculus

ISBN: 9781319055844

4th Edition

Authors: Jon Rogawski, Colin Adams, Robert Franzosa

Question Posted: