Woods (1995b) provides different heat capacity and latent heat equations for phenol and naphthalene with different temperature

Question:

Woods (1995b) provides different heat capacity and latent heat equations for phenol and naphthalene with different temperature ranges. Note that these are predicted values regardless of the existence of the compound as a liquid at \(25^{\circ} \mathrm{C}\).

Liquid heat capacities with \(\mathrm{C}_{\mathrm{p}}\left(25^{\circ} \mathrm{C}\right)\) in \(\mathrm{kJ} /(\mathrm{kg} \mathrm{K})\) and \(\mathrm{dC}_{\mathrm{p}} / \mathrm{dT} \mathrm{kJ} /\left(\mathrm{kg} \mathrm{K}^{2}\right)\) :

Naphthalene \(\mathrm{C}_{\mathrm{p}, \mathrm{L}}\left(25^{\circ} \mathrm{C}\right)=1.523 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K}), \mathrm{dC}_{\mathrm{p}, \mathrm{L}} / \mathrm{dT}=0.00375 \mathrm{~kJ} /\left(\mathrm{kg} \mathrm{K}{ }^{2}\right)\), phenol \(\mathrm{C}_{\mathrm{p} . \mathrm{L}}\) \(\left(25^{\circ} \mathrm{C}\right)=2.2 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K}), \mathrm{dC}_{\mathrm{p}, \mathrm{L}} / \mathrm{dT}=0.00176 \mathrm{~kJ} /\left(\mathrm{kg} \mathrm{K}{ }^{2}\right)\).

Heats of melting \(\lambda_{\mathrm{M}}\) and of evaporation \(\lambda_{\mathrm{V}}\) at \(25^{\circ} \mathrm{C}\) :

Naphthalene \(\lambda_{\mathrm{M}}=149 \mathrm{~kJ} / \mathrm{kg}, \lambda_{\mathrm{V}}=337 \mathrm{~kJ} / \mathrm{kg}\), phenol \(\lambda_{\mathrm{M}}=121 \mathrm{~kJ} / \mathrm{kg}, \lambda_{\mathrm{V}}=487 \mathrm{~kJ} / \mathrm{kg}\).
Woods does not provide the heat capacity of solid phenol, so use \(\mathrm{C}_{\mathrm{P}, \text { phenol,solid }}=220.9\)
\(\mathrm{kJ} /(\mathrm{kmol} \mathrm{K})\).
Use Woods's data to determine the total cooling requirement for the crystallization operation for Example 18-9 and compare with the result from the example. Note that a slightly different path for the energy balance may be required.

image text in transcribed

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: