Characterize the systems below as linear/nonlinear, causal/noncausal and time invariant/time varying: (a) (y(n)=(n+a)^{2} x(n+4)) (b) (y(n)=a x(n+1))
Question:
Characterize the systems below as linear/nonlinear, causal/noncausal and time invariant/time varying:
(a) \(y(n)=(n+a)^{2} x(n+4)\)
(b) \(y(n)=a x(n+1)\)
(c) \(y(n)=x(n+1)+x^{3}(n-1)\)
(d) \(y(n)=x(n) \sin (\omega n)\)
(e) \(y(n)=x(n)+\sin (\omega n)\)
(f) \(y(n)=\frac{x(n)}{x(n+3)}\)
(g) \(y(n)=y(n-1)+8 x(n-3)\)
(h) \(y(n)=2 n y(n-1)+3 x(n-5)\)
(i) \(y(n)=n^{2} y(n+1)+5 x(n-2)+x(n-4)\)
(j) \(y(n)=y(n-1)+x(n+5)+x(n-5)\)
(k) \(y(n)=(2 u(n-3)-1) y(n-1)+x(n)+x(n-1)\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Digital Signal Processing System Analysis And Design
ISBN: 9780521887755
2nd Edition
Authors: Paulo S. R. Diniz, Eduardo A. B. Da Silva , Sergio L. Netto
Question Posted: