Consider a closed loop system having the forward path transfer function (G(s)=(s+1)^{-1}) and the feedback path transfer
Question:
Consider a closed loop system having the forward path transfer function \(G(s)=(s+1)^{-1}\) and the feedback path transfer function \(H(s)=\frac{2}{s}\). Find its output \(c(t)\) in BPF domain for a step input \(u(t)\) using the convolution matrix. Consider \(m=4\) and \(T=1 \mathrm{~s}\). Finally, compare the result graphically with the direct BPF expansion of \(c(t)\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Control System Analysis And Identification With MATLAB Block Pulse And Related Orthogonal Functions
ISBN: 246725
1st Edition
Authors: Anish Deb, Srimanti Roychoudhury
Question Posted: