Design the following filters using the Kaiser window: (a) (A_{mathrm{p}}=1.0 mathrm{~dB}) (A_{mathrm{r}}=40 mathrm{~dB}) (Omega_{mathrm{p}}=1000 mathrm{rad} / mathrm{s})
Question:
Design the following filters using the Kaiser window:
(a) \(A_{\mathrm{p}}=1.0 \mathrm{~dB}\)
\(A_{\mathrm{r}}=40 \mathrm{~dB}\)
\(\Omega_{\mathrm{p}}=1000 \mathrm{rad} / \mathrm{s}\)
\(\Omega_{\mathrm{r}}=1200 \mathrm{rad} / \mathrm{s}\)
\(\Omega_{\mathrm{s}}=5000 \mathrm{rad} / \mathrm{s}\).
(b) \(A_{\mathrm{p}}=1.0 \mathrm{~dB}\)
\(A_{\mathrm{r}}=40 \mathrm{~dB}\)
\(\Omega_{\mathrm{r}}=1000 \mathrm{rad} / \mathrm{s}\)
\(\Omega_{\mathrm{p}}=1200 \mathrm{rad} / \mathrm{s}\)
\(\Omega_{\mathrm{s}}=5000 \mathrm{rad} / \mathrm{s}\).
(c) \(A_{\mathrm{p}}=1.0 \mathrm{~dB}\)
\(A_{\mathrm{r}}=50 \mathrm{~dB}\)
\(\Omega_{\mathrm{r}_{1}}=800 \mathrm{rad} / \mathrm{s}\)
\(\Omega_{\mathrm{p}_{1}}=1000 \mathrm{rad} / \mathrm{s}\)
\(\Omega_{\mathrm{p}_{2}}=1100 \mathrm{rad} / \mathrm{s}\)
\(\Omega_{\mathrm{r}_{2}}=1400 \mathrm{rad} / \mathrm{s}\)
\(\Omega_{\mathrm{s}}=10000 \mathrm{rad} / \mathrm{s}\).
Step by Step Answer:
Digital Signal Processing System Analysis And Design
ISBN: 9780521887755
2nd Edition
Authors: Paulo S. R. Diniz, Eduardo A. B. Da Silva , Sergio L. Netto