Show that the discrete cosine transform of a length- (N) sequence (x(n)) can be computed from the

Question:

Show that the discrete cosine transform of a length- \(N\) sequence \(x(n)\) can be computed from the length \(N\) DFT of a sequence \(\hat{x}(n)\) consisting of the following reordering of the even and odd elements of \(x(n)\) :

\[\left.\begin{array}{rl}\hat{x}(n) & =x(2 n) \\\hat{x}(N-1-n) & =x(2 n+1)\end{array}\right\} \text { for } 0 \leq n \leq \frac{N}{2}-1\]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Digital Signal Processing System Analysis And Design

ISBN: 9780521887755

2nd Edition

Authors: Paulo S. R. Diniz, Eduardo A. B. Da Silva , Sergio L. Netto

Question Posted: