The file EastWestAirlinesCluster.csv contains information on 3999 passengers who belong to an airlines frequent flier program. For

Question:

The file EastWestAirlinesCluster.csv contains information on 3999 passengers who belong to an airline’s frequent flier program. For each passenger, the data include information on their mileage history and on different ways they accrued or spent miles in the last year. The goal is to try to identify clusters of passengers that have similar characteristics for the purpose of targeting different segments for different types of mileage offers.

a. Apply an iterative k-means clustering in RapidMiner using the X-Means operator, specifying parameters: k min = 2, k_max = 10. Make sure to normalize the data first. How many clusters appear?

b. What would happen if the data were not normalized?

c. Compare the cluster centroid to characterize the different clusters, and try to give each cluster a label.

d. To check the stability of the clusters, remove a random 5% of the data (by taking a random sample of 95% of the records), and repeat the analysis. Does the same picture emerge?

e. Which clusters would you target for offers, and what types of offers would you target to customers in that cluster?

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Machine Learning For Business Analytics

ISBN: 9781119828792

1st Edition

Authors: Galit Shmueli, Peter C. Bruce, Amit V. Deokar, Nitin R. Patel

Question Posted: