Let (T>0) be fixed and let (varphi:[0, T] ightarrow mathbb{R}) be a bounded Borel function and
Question:
Let \(T>0\) be fixed and let \(\varphi:[0, T] \rightarrow \mathbb{R}\) be a bounded Borel function and \(N\) a Poisson process. Prove that there exist a predictable process \(h\) and a constant \(c\) such that
\[\exp \left(\int_{0}^{T} \varphi(s) d N_{s}\right)=c+\int_{0}^{T} h_{s} d N_{s}\]
Set \(Z_{t}=\int_{0}^{t} \varphi(s) d N_{s}\). Then,
\[d e^{Z_{t}}=\left(e^{Z_{t^{-}}+\varphi(t)}-e^{Z_{t^{-}}}\right) d N_{t} .\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Mathematical Methods For Financial Markets
ISBN: 9781447125242
1st Edition
Authors: Monique Jeanblanc, Marc Yor, Marc Chesney
Question Posted: