Let (T>0) be fixed and let (varphi:[0, T] ightarrow mathbb{R}) be a bounded Borel function and

Question:

Let \(T>0\) be fixed and let \(\varphi:[0, T] \rightarrow \mathbb{R}\) be a bounded Borel function and \(N\) a Poisson process. Prove that there exist a predictable process \(h\) and a constant \(c\) such that

\[\exp \left(\int_{0}^{T} \varphi(s) d N_{s}\right)=c+\int_{0}^{T} h_{s} d N_{s}\]

Set \(Z_{t}=\int_{0}^{t} \varphi(s) d N_{s}\). Then,

\[d e^{Z_{t}}=\left(e^{Z_{t^{-}}+\varphi(t)}-e^{Z_{t^{-}}}\right) d N_{t} .\]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Mathematical Methods For Financial Markets

ISBN: 9781447125242

1st Edition

Authors: Monique Jeanblanc, Marc Yor, Marc Chesney

Question Posted: