Let (Z) be a complex BM (Z_{t}=X_{t}+i Y_{t}). Consider the two martingales (left|Z_{t} ight|^{2}-2 t) and (int_{0}^{t}left(X_{s}

Question:

Let \(Z\) be a complex BM \(Z_{t}=X_{t}+i Y_{t}\). Consider the two martingales \(\left|Z_{t}\right|^{2}-2 t\) and \(\int_{0}^{t}\left(X_{s} d Y_{s}-Y_{s} d X_{s}\right)\). Prove that

\[\frac{1}{2}\left(\left|Z_{t}\right|^{2}-2 t\right)+i \int_{0}^{t}\left(X_{s} d Y_{s}-Y_{s} d X_{s}\right)\]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Mathematical Methods For Financial Markets

ISBN: 9781447125242

1st Edition

Authors: Monique Jeanblanc, Marc Yor, Marc Chesney

Question Posted: