Prove that [left{begin{array}{l}operatorname{DeltaC}(x, K ; r, delta)=frac{1}{x}left[C_{E}(x, K ; r, delta)+K operatorname{BinC}(x, K ; r, delta) ight]

Question:

Prove that

\[\left\{\begin{array}{l}\operatorname{DeltaC}(x, K ; r, \delta)=\frac{1}{x}\left[C_{E}(x, K ; r, \delta)+K \operatorname{BinC}(x, K ; r, \delta)\right] \tag{3.6.12}\\\operatorname{DeltaP}(x, K ; r, \delta)=\frac{1}{x}\left[P_{E}(x, K ; r, \delta)-K \operatorname{BinP}(x, K ; r, \delta)\right]\end{array}\right.\]

where the quantities are evaluated at time \(T-t\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Mathematical Methods For Financial Markets

ISBN: 9781447125242

1st Edition

Authors: Monique Jeanblanc, Marc Yor, Marc Chesney

Question Posted: