The Carreau-Yasuda model is a popular formulation for representing non-Newtonian fluid behavior. The model is: [mu=left{mu_{infty}+left(mu_{0}-mu_{infty} ight)left[1+(K|dot{gamma}|)^{a}
Question:
The Carreau-Yasuda model is a popular formulation for representing non-Newtonian fluid behavior. The model is:
\[\mu=\left\{\mu_{\infty}+\left(\mu_{0}-\mu_{\infty}\right)\left[1+(K|\dot{\gamma}|)^{a}\right]^{\frac{n-1}{a}}\right\}\]
where $\dot{\gamma}$ is the shear rate, $\mu_{0}$ is the viscosity at zero shear rate and $\mu_{\infty}$ is the viscosity at infinite shear rate. One of the composite materials that the Carreau-Yasuda model has been used for is to determine the rheology of blood. Given the data below, fit the Carreau-Yasuda model and determine the values of the parameters.
Viscosity $\left(\mathbf{N s} / \mathbf{m}^{2}\right)$ | Shear Rate $(\mathbf{1} / \mathbf{s})$ | Viscosity $\left(\mathbf{N s} / \mathbf{m}^{2}\right)$ | Shear Rate $(\mathbf{1} / \mathbf{s})$ |
---|---|---|---|
0.2 | 0 | 0.0254 | 50 |
0.048 | 3.33333 | 0.0244 | 60 |
0.04 | 6.66667 | 0.0236 | 70 |
0.037 | 10 | 0.0229 | 80 |
0.034 | 13.3333 | 0.0223 | 90 |
0.033 | 16.6667 | 0.0218 | 100 |
0.031 | 20 | 0.0208 | 120 |
0.030 | 23.3333 | 0.0202 | 140 |
0.029 | 26.6667 | 0.0196 | 160 |
0.028 | 30 | 0.0190 | 180 |
0.028 | 33.3333 | 0.0186 | 200 |
0.027 | 36.6667 | 0.0181 | 230 |
0.0268 | 40 | 0.0176 | 260 |
0.0263 | 43.3333 | 0.0172 | 290 |
0.0259 | 46.6667 | 0.0167 | 320 |
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: