The Carreau-Yasuda model is a popular formulation for representing non-Newtonian fluid behavior. The model is: [mu=left{mu_{infty}+left(mu_{0}-mu_{infty} ight)left[1+(K|dot{gamma}|)^{a}

Question:

The Carreau-Yasuda model is a popular formulation for representing non-Newtonian fluid behavior. The model is:

\[\mu=\left\{\mu_{\infty}+\left(\mu_{0}-\mu_{\infty}\right)\left[1+(K|\dot{\gamma}|)^{a}\right]^{\frac{n-1}{a}}\right\}\]

where $\dot{\gamma}$ is the shear rate, $\mu_{0}$ is the viscosity at zero shear rate and $\mu_{\infty}$ is the viscosity at infinite shear rate. One of the composite materials that the Carreau-Yasuda model has been used for is to determine the rheology of blood. Given the data below, fit the Carreau-Yasuda model and determine the values of the parameters.

Viscosity $\left(\mathbf{N s} / \mathbf{m}^{2}\right)$Shear Rate $(\mathbf{1} / \mathbf{s})$Viscosity $\left(\mathbf{N s} / \mathbf{m}^{2}\right)$Shear Rate $(\mathbf{1} / \mathbf{s})$
0.200.025450
0.0483.333330.024460
0.046.666670.023670
0.037100.022980
0.03413.33330.022390
0.03316.66670.0218100
0.031200.0208120
0.03023.33330.0202140
0.02926.66670.0196160
0.028300.0190180
0.02833.33330.0186200
0.02736.66670.0181230
0.0268400.0176260
0.026343.33330.0172290
0.025946.66670.0167320
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: