Consider the geometry of Problem 2.14 for the case where the thermal conductivity varies with temperature as
Question:
Consider the geometry of Problem 2.14 for the case where the thermal conductivity varies with temperature as k = ko + aT, where ko = 10W/m · K, a= –10–3 W/m · K2, and T is in kelvins. The gradient at surface B is ∂T/∂x = 30 K/m. What is ∂ T/∂ y at surface A?
Data From Problem 2.14
In the two-dimensional body illustrated, the gradient at surface A is found to be ∂T/∂y = 30 K/m. What are ∂T/∂y and ∂T/∂x at surface B?
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Fundamentals Of Heat And Mass Transfer
ISBN: 9780470501979
7th Edition
Authors: Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt
Question Posted: