Reconsider Prob. 2039. In order to reduce the heating cost of the hot water, it is proposed

Question:

Reconsider Prob. 20€“39. In order to reduce the heating cost of the hot water, it is proposed to insulate the side and bottom surfaces of the container with 5-cm-thick fiberglass insulation (k = 0.035 W/m·K) and to wrap the insulation with aluminum foil (ε = 0.1) in order to minimize the heat loss by radiation. An estimate is obtained from a local insulation contractor, who proposes to do the insulation job for $350, including materials and labor. Would you support this proposal? How long will it take for the insulation to pay for itself from the energy it saves? Evaluate air properties at a film temperature of 23°C and 1 atm pressure. Is this a good assumption?


Reconsider Prob. 20€“39.

In a plant that manufactures canned aerosol paints, the cans are temperature-tested in water baths at 55°C before they are shipped to ensure that they withstand temperatures up to 55°C during transportation and shelving. The cans, moving on a conveyor, enter the open hot water bath, which is 0.5 m deep, 1 m wide, and 3.5 m long, and move slowly in the hot water toward the other end. Some of the cans fail the test and explode in the water bath. The water container is made of sheet metal, and the entire container is at about the same temperature as the hot water. The emissivity of the outer surface of the container is 0.7. If the temperature of the surrounding air and surfaces is 20°C, determine the rate of heat loss from the four side surfaces of the container (disregard the top surface, which is open).

The water is heated electrically by resistance heaters, and the cost of electricity is $0.085/kWh. If the plant operates 24 h a day 365 days a year and thus 8760 h a year, determine the annual cost of the heat losses from the container for this facility.

Aerosol can Water bath 55°C TH

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Fundamentals of Thermal-Fluid Sciences

ISBN: 978-0078027680

5th edition

Authors: Yunus A. Cengel, Robert H. Turner, John M. Cimbala

Question Posted: