The (operatorname{Der}(T, t)) function of (I H T) can be used to represent the temperature-time derivative of
Question:
The \(\operatorname{Der}(T, t)\) function of \(I H T\) can be used to represent the temperature-time derivative of Equation 5.75. In this problem we will use the Der function to solve Example 5.12.
(a) Show, using the energy balance method, that the implicit form of the finite-difference equations for nodes \(1 \leq m \leq 8\) of Example 5.12 can be written as
\[\begin{aligned}ho c \Delta x \operatorname{Der}\left(T_{m}^{p+1}, t\right)= & \frac{k}{\Delta x}\left(T_{m-1}^{p+1}-T_{m}^{p+1}\right) \\& +\frac{k}{\Delta x}\left(T_{m+1}^{p+1}-T_{m}^{p+1}\right)\end{aligned}\]
(b) Derive the implicit form of the finite-difference equation for node \(m=0\) of Example 5.12.
(c) For \(T_{9}=20^{\circ} \mathrm{C}\) and using a time step of \(\Delta t=24 \mathrm{~s}\), determine the temperatures at nodes 0 through 8 at \(t=120 \mathrm{~s}\).
Data From Example 5.12:-
Equation 5.75:-
Step by Step Answer:
Fundamentals Of Heat And Mass Transfer
ISBN: 9781119220442
8th Edition
Authors: Theodore L. Bergman, Adrienne S. Lavine