a) Solve the stochastic differential equation [ begin{equation*} d X_{t}=-b X_{t} d t+sigma mathrm{e}^{-b t} d B_{t},
Question:
a) Solve the stochastic differential equation
\[
\begin{equation*}
d X_{t}=-b X_{t} d t+\sigma \mathrm{e}^{-b t} d B_{t}, \quad t \geqslant 0 \tag{4.40}
\end{equation*}
\]
where \(\left(B_{t}ight)_{t \in \mathbb{R}_{+}}\)is a standard Brownian motion and \(\sigma, b \in \mathbb{R}\).
b) Solve the stochastic differential equation
\[
\begin{equation*}
d X_{t}=-b X_{t} d t+\sigma \mathrm{e}^{-a t} d B_{t}, \quad t \geqslant 0 \tag{4.41}
\end{equation*}
\]
where \(\left(B_{t}ight)_{t \in \mathbb{R}_{+}}\)is a standard Brownian motion and \
(a,
b, \sigma>0\) are positive constants.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction To Stochastic Finance With Market Examples
ISBN: 9781032288277
2nd Edition
Authors: Nicolas Privault
Question Posted: