Consider a price process (left(S_{t} ight)_{t in mathbb{R}_{+}})given by (d S_{t}=r S_{t} d t+sigma S_{t} d B_{t})
Question:
Consider a price process \(\left(S_{t}\right)_{t \in \mathbb{R}_{+}}\)given by \(d S_{t}=r S_{t} d t+\sigma S_{t} d B_{t}\) under the risk-neutral probability measure \(\mathbb{P}^{*}\), where \(r \in \mathbb{R}\) and \(\sigma>0\), and the option with payoff
\[S_{T}\left(S_{T}-K\right)^{+}=\operatorname{Max}\left(S_{T}\left(S_{T}-K\right), 0\right)\]
at maturity \(T\).
a) Show that the option payoff can be rewritten as
\[\left(S_{T}\left(S_{T}-K\right)\right)^{+}=N_{T}\left(S_{T}-K\right)^{+}\]
for a suitable choice of numéraire process \(\left(N_{t}\right)_{t \in[0, T]}\).
b) Rewrite the option price \(\mathrm{e}^{-(T-t) r} \mathbb{E}^{*}\left[\left(S_{T}\left(S_{T}-K\right)\right)^{+} \mid \mathcal{F}_{t}\right]\) using a forward measure \(\widehat{\mathbb{P}}\) and a change of numéraire argument.
c) Find the dynamics of \(\left(S_{t}\right)_{t \in \mathbb{R}_{+}}\)under the forward measure \(\widehat{\mathbb{P}}\).
d) Price the option with payoff
\[S_{T}\left(S_{T}-K\right)^{+}=\operatorname{Max}\left(S_{T}\left(S_{T}-K\right), 0\right)\]
at time \(t \in[0, T]\) using the Black-Scholes formula.
Step by Step Answer:
Introduction To Stochastic Finance With Market Examples
ISBN: 9781032288277
2nd Edition
Authors: Nicolas Privault