For the velocity fields given below, determine: (a) whether the flow field is one-, two-, or three-dimensional,
Question:
For the velocity fields given below, determine:
(a) whether the flow field is one-, two-, or three-dimensional, and why.
(b) whether the flow is steady or unsteady, and why.
(The quantities \(a\) and \(b\) are constants.)
\(1 \vec{V}=\left[a y^{2} e^{-b t}\right] \hat{i}\)
\(2 \vec{V}=a x^{2} \hat{i}+b x \hat{j}+c \hat{k}\)
\(3 \vec{V}=a x y \hat{i}-b y t \hat{j}\)
\(4 \vec{V}=a x \hat{i}-b y \hat{j}+c t \hat{k}\)
\(5 \vec{V}=\left[a e^{-b x}\right] \hat{i}+b t^{2} \hat{j}\)
\(6 \vec{V}=a\left(x^{2}+y^{2}\right)^{1 / 2}\left(1 / z^{3}\right) \hat{k}\)
\(7 \vec{V}=(a x+t) \hat{i}-b y^{2} \hat{j}\)
\(8 \vec{V}=a x^{2} \hat{i}+b x z \hat{j}+c y \hat{k}\)
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Fox And McDonald's Introduction To Fluid Mechanics
ISBN: 9781118912652
9th Edition
Authors: Philip J. Pritchard, John W. Mitchell
Question Posted: