Question: Use the quantifier negation rule together with the eighteen rules of inference to derive the conclusions of the following symbolized arguments. Do not use either
Use the quantifier negation rule together with the eighteen rules of inference to derive the conclusions of the following symbolized arguments. Do not use either conditional proof or indirect proof.
★(1) 1. (x)Ax ⊃ (∃x)Bx 2. (x)∼Bx / (∃x)∼Ax
(2) 1. (∃x)∼Ax ⋁ (∃x)∼Bx 2. (x)Bx / ∼(x)Ax
(3) 1. ∼(∃x)Ax / (x)(Ax ⊃ Bx)
★(4) 1. (∃x)Ax ⋁ (∃x)(Bx Cx)
2. ∼(∃x)Bx / (∃x)Ax
(5) 1. (x)(Ax Bx) ⋁ (x)(Cx Dx)
2. ∼(x)Dx / (x)Bx
(6) 1. (∃x)∼Ax ⊃ (x)(Bx ⊃ Cx)
2. ∼(x)(Ax ⋁ Cx) / ∼(x)Bx
★(7) 1. (x)(Ax ⊃ Bx)
2. ∼(x)Cx ⋁ (x)Ax 3. ∼(x)Bx / (∃x)∼Cx
(8) 1. (x)Ax ⊃ (∃x)∼Bx 2. ∼(x)Bx ⊃ (∃x)∼Cx / (x)Cx ⊃ (∃x)∼Ax
(9) 1. (∃x)(Ax ⋁ Bx) ⊃ (x)Cx 2. (∃x)∼Cx / ∼(∃x)Ax
★(10) 1. ∼(∃x)(Ax ∼Bx)
2. ∼(∃x)(Bx ∼Cx) / (x)(Ax ⊃ Cx)
(11) 1. ∼(∃x)(Ax ∼Bx)
2. ∼(∃x)(Ax ∼Cx) / (x)[Ax ⊃ (Bx Cx)]
(12) 1. (x)[(Ax Bx) ⊃ Cx]
2. ∼(x)(Ax ⊃ Cx) / ∼(x)Bx
★(13) 1. (x)(Ax ∼Bx) ⊃ (∃x)Cx 2. ∼(∃x)(Cx ⋁ Bx) / ∼(x)Ax
(14) 1. (∃x)∼Ax ⊃ (x)∼Bx 2. (∃x)∼Ax ⊃ (∃x)Bx 3. (x)(Ax ⊃ Cx) / (x)Cx (15) 1. ∼(∃x)(Ax ⋁ Bx)
2. (∃x)Cx ⊃ (∃x)Ax 3. (∃x)Dx ⊃ (∃x)Bx / ∼(∃x)(Cx ⋁ Dx)
★(16) 1. (∃x)(Ax Bx) ⊃ (x)(Cx Dx)
2. (x)[(Ax ⋁ Ex) (Bx ⋁ Fx)]
3. ∼(x)Dx / (x)(Ex ⋁ Fx)
(17) 1. (∃x)(Ax Bx) ⋁ (∃x)(Cx ⋁ Dx)
2. (∃x)(Ax ⋁ Cx) ⊃ (x)Ex 3. ∼En / (∃x)Dx (18) 1. (∃x)Ax ⊃ [(∃x)Bx ⋁ (x)Cx]
2. (∃x)(Ax ∼Cx)
3. ∼(x)Cx ⊃ [(x)Fx ⊃ (x)∼Bx] / (∃x)∼Fx ★(19) 1. (∃x)(Ax Bx) ⊃ (x)(Bx ⊃ Cx)
2. Bn ∼Cn / ∼(x)Ax (20) 1. (∃x)Ax ⊃ ∼(∃x)(Bx Ax)
2. ∼(x)Bx ⊃ ∼(∃x)(Ex ∼Bx)
3. An / ∼(x)Ex
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
