The dimension of a machined part made by Machinheimer Machinery has a nominal specification of 11.9 cm.
Question:
The dimension of a machined part made by Machinheimer Machinery has a nominal specification of 11.9 cm. The process that produces the part can be controlled to have a mean value equal to this specification, but has a standard deviation of 0.05 cm. What is the probability that a part will have a dimension:a. Exceeding 12 cm?b. Between 11.9 and 11.95 cm?c. Less than 11.83 cm?
Machinheimer Machinery | |||||||||
Probability Calculations Using the Normal Distribution - Template | |||||||||
Enter data only in the shaded cells | |||||||||
This spreadsheet is designed to calculate the probability of values equal to, or less than, a desired x value, | |||||||||
given the mean and standard deviation of a normally distributed variable. It uses the cumulative normal distribution | |||||||||
Enter the mean of the distribution in shaded cell D11 and the standard deviation in shaded cell D12. below. | |||||||||
Enter the desired X-value in shaded cell D10, below. The calculated z-value and probability will be seen in D11 and D12. | |||||||||
Mean of distribution | 11.9 | ||||||||
Std deviation of distribution | 0.05 | ||||||||
Desired x-value | 12 | ||||||||
Calculated z-value | 2.000 | ||||||||
Probability of x, or less | 0.97725 | ||||||||
(X-axis) | Probability Using | ||||||||
Desired x-values | Equivalent - Z Values | NORMS.DIST | |||||||
11.700 | -4.00 | 0.00003 | |||||||
11.705 | -3.90 | 0.00005 | |||||||
11.710 | -3.80 | 0.00007 | |||||||
11.715 | -3.70 | 0.00011 | |||||||
11.720 | -3.60 | 0.00016 | |||||||
11.725 | -3.50 | 0.00023 | |||||||
11.730 | -3.40 | 0.00034 | |||||||
11.735 | -3.30 | 0.00048 | |||||||
11.740 | -3.20 | 0.00069 | |||||||
11.745 | -3.10 | 0.00097 | |||||||
11.750 | -3.00 | 0.00135 | |||||||
11.755 | -2.90 | 0.00187 | |||||||
11.760 | -2.80 | 0.00256 | |||||||
11.765 | -2.70 | 0.00347 | |||||||
11.770 | -2.60 | 0.00466 | |||||||
11.775 | -2.50 | 0.00621 | |||||||
11.780 | -2.40 | 0.00820 | |||||||
11.785 | -2.30 | 0.01072 | |||||||
11.790 | -2.20 | 0.01390 | |||||||
11.795 | -2.10 | 0.01786 | |||||||
11.800 | -2.00 | 0.02275 | |||||||
11.805 | -1.90 | 0.02872 | |||||||
11.810 | -1.80 | 0.03593 | |||||||
11.815 | -1.70 | 0.04457 | |||||||
11.820 | -1.60 | 0.05480 | |||||||
11.825 | -1.50 | 0.06681 | |||||||
11.830 | -1.40 | 0.08076 | |||||||
11.835 | -1.30 | 0.09680 | |||||||
11.840 | -1.20 | 0.11507 | |||||||
11.845 | -1.10 | 0.13567 | |||||||
11.850 | -1.00 | 0.15866 | |||||||
11.855 | -0.90 | 0.18406 | |||||||
11.860 | -0.80 | 0.21186 | |||||||
11.865 | -0.70 | 0.24196 | |||||||
11.870 | -0.60 | 0.27425 | |||||||
11.875 | -0.50 | 0.30854 | |||||||
11.880 | -0.40 | 0.34458 | |||||||
11.885 | -0.30 | 0.38209 | |||||||
11.890 | -0.20 | 0.42074 | |||||||
11.895 | -0.10 | 0.46017 | |||||||
11.900 | 0.00 | 0.50000 | |||||||
11.905 | 0.10 | 0.53983 | |||||||
11.910 | 0.20 | 0.57926 | |||||||
11.915 | 0.30 | 0.61791 | |||||||
11.920 | 0.40 | 0.65542 | |||||||
11.925 | 0.50 | 0.69146 | |||||||
11.930 | 0.60 | 0.72575 | |||||||
11.935 | 0.70 | 0.75804 | |||||||
11.940 | 0.80 | 0.78814 | |||||||
11.945 | 0.90 | 0.81594 | |||||||
11.950 | 1.00 | 0.84134 |
Transcribed Image Text:
Cumulative Probability Cumulative Probability Function 1.00 0.90 0.80 0.70 0.60 0.50 9.40 0.30 0.20 0.10 0.00 -4.0-3.8-3.6-3.4-3.2-3.0-2.8-2.6-2.4-2.2-2.0-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.84.0 z-values NORMS. DIST
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
An Introduction To Six Sigma And Process ImprovementISBN: 9781133604587 2nd Edition Authors: James R. Evans, William M. Lindsay
Question Posted:
|