Exercise 21 lists the observed frequencies of leading digits from amounts on checks from seven suspect companies.
Question:
Exercise 21 lists the observed frequencies of leading digits from amounts on checks from seven suspect companies. Here are the observed frequencies of the leading digits from the amounts on the most recent checks written by the author at the time this exercise was created: 83, 58, 27, 21, 21, 21, 6, 4, 9. (Those observed frequencies correspond to the leading digits of 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively.) Using a 0.01 significance level, test the claim that these leading digits are from a population of leading digits that conform to Benford’s law. Does the conclusion change if the significance level is 0.05?
Data From Exercise 21:
When working for the Brooklyn district attorney, investigator Robert Burton analyzed the leading digits of the amounts from 784 checks issued by seven suspect companies. The frequencies were found to be 0, 15, 0, 76, 479, 183, 8, 23, and 0, and those digits correspond to the leading digits of 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively. If the observed frequencies are substantially different from the frequencies expected with Benford’s law, the check amounts appear to result from fraud. Use a 0.01 significance level to test for goodness-of-fit with Benford’s law. Does it appear that the checks are the result of fraud?
Step by Step Answer:
Mathematical Interest Theory
ISBN: 9781470465681
3rd Edition
Authors: Leslie Jane, James Daniel, Federer Vaaler