Prove the identities: a. (abla cdot(abla times mathbf{A})=0). b. (abla cdot(f abla g-g abla f)=f abla^{2} g-g

Question:

Prove the identities:

a. \(abla \cdot(abla \times \mathbf{A})=0\).

b. \(abla \cdot(f abla g-g abla f)=f abla^{2} g-g abla^{2} f\).

c. \(abla r^{n}=n r^{n-2} \mathbf{r}, \quad n \geq 2\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: