Use Laplace transforms to prove [sum_{n=1}^{infty} frac{1}{(n+a)(n+b)}=frac{1}{b-a} int_{0}^{1} frac{u^{a}-u^{b}}{1-u} d u] Use this result to evaluate the

Question:

Use Laplace transforms to prove

\[\sum_{n=1}^{\infty} \frac{1}{(n+a)(n+b)}=\frac{1}{b-a} \int_{0}^{1} \frac{u^{a}-u^{b}}{1-u} d u\]

Use this result to evaluate the following sums:

a. \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\).

b. \(\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: