Calculate the Fourier transform of the following functions/measures on (mathbb{R}) : (a) (mathbb{1}_{[-1,1]}(x)), (b) (mathbb{1}_{[-1,1]} star mathbb{1}_{[-1,1]}(x)),
Question:
Calculate the Fourier transform of the following functions/measures on \(\mathbb{R}\) :
(a) \(\mathbb{1}_{[-1,1]}(x)\),
(b) \(\mathbb{1}_{[-1,1]} \star \mathbb{1}_{[-1,1]}(x)\),
(c) \(e^{-x} \mathbb{1}_{[0, \infty)}(x)\),
(d) \(e^{-|x|}\),
(e) \(1 /\left(1+x^{2}ight)\),
(f) \(\quad(1-|x|) \mathbb{1}_{[-1,1]}(x)\),
(g) \(\sum_{k=0}^{\infty} \frac{t^{k}}{k !} e^{-t} \delta_{k}\)
(h) \(\sum_{k=0}^{n}\left(\begin{array}{l}n \\ k\end{array}ight) p^{k} q^{n-k} \delta_{k}\)
\footnotetext{
\({ }^{1}\) With some effort one can make this explicit using the Leibniz formula for derivatives of products.
\({ }^{2}\) For clarity, we use \(\mathscr{F}_{x ightarrow \xi}[u(x)](\xi)\) to denote \(\mathscr{F} u(\xi)=\widehat{u}(\xi)\).
}
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: