The pressure is given by [ frac{P}{n k T}=1-frac{n}{2 d k T} int r g(r) frac{d u}{d
Question:
The pressure is given by
\[
\frac{P}{n k T}=1-\frac{n}{2 d k T} \int r g(r) \frac{d u}{d r} d \boldsymbol{r}
\]
where \(g(r)=y(r) e^{-\beta u(r)}\). This gives
\[
\frac{P}{n k T}=1-\frac{n}{2 d k T} \int r y(r) \frac{d u}{d r} e^{-\beta u(r)} d \boldsymbol{r}=1+\frac{n}{2 d} \int r y(r) \frac{d}{d r}\left(e^{-\beta u(r)}ight) d \boldsymbol{r},
\]
For the case of hard spheres,
\[
\frac{d}{d r}\left(e^{-\beta u(r)}ight)=\delta(r-D)
\]
so
\[
\frac{P}{n k T}=1+\frac{n D^{d}}{2 d} \Omega_{d} y(D)
\]
where \(\Omega_{d}\) is the area of the \(d\)-dimensional unit sphere. For hard spheres \(y(D)=g\left(D^{+}ight)\). In three dimensions \(\eta=\pi n D^{3} / 6\) and \(\Omega_{3}=4 \pi\), so \(P /(n k T)=1+4 \eta g\left(D^{+}ight)\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: