Question: Show that if f(x) = e cos x then and find f(0) and f(0). Differentiating the expression for f(x), obtain f(x) in terms of f(x)

Show that if f(x) = ecos x then

f'(x) = f(x) sin.x

and find f(0) and f´(0). Differentiating the expression for f´(x), obtain f"(x) in terms of f(x) and f´(x), and find f"(0). Repeating the process, obtain f(n)(0) for n = 3, 4, 5 and 6, and hence obtain the Maclaurin polynomial of degree 6 for f(x). Confirm your answer by obtaining the series using the Maclaurin expansions of ex and cos x.

f'(x) = f(x) sin.x

Step by Step Solution

3.32 Rating (149 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

fx ecos x fx ecox sin x fx sin x so fx fx sin xfx cos x fx fx ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Modern Engineering Mathematics Questions!