Let (B_{t}=left(b_{t}, beta_{t} ight)) be a (mathrm{BM}^{2}). Solve the (mathrm{SDE}) [X_{t}=x+b int_{0}^{t} X_{s} d s+sigma_{1} int_{0}^{t} X_{s}

Question:

Let \(B_{t}=\left(b_{t}, \beta_{t}\right)\) be a \(\mathrm{BM}^{2}\). Solve the \(\mathrm{SDE}\)

\[X_{t}=x+b \int_{0}^{t} X_{s} d s+\sigma_{1} \int_{0}^{t} X_{s} d b_{s}+\sigma_{2} \int_{0}^{t} X_{s} d \beta_{s}\]

with \(x, b \in \mathbb{R}\) and \(\sigma_{1}, \sigma_{2}>0\).

Rewrite the SDE using the result of Problem 19.3 and then apply Example 21.4.

Data From 19.3 Problem

image text in transcribed

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: