Let (left(B_{t} ight)_{t geqslant 0}) be a (mathrm{BM}^{1}). Use Lemma 21.10 to find the solution of the
Question:
Let \(\left(B_{t}\right)_{t \geqslant 0}\) be a \(\mathrm{BM}^{1}\). Use Lemma 21.10 to find the solution of the following SDE:
\[d X_{t}=\left(\sqrt{1+X_{t}^{2}}+\frac{1}{2} X_{t}\right) d t+\sqrt{1+X_{t}^{2}} d B_{t}\]
Data From 21.10 Lemma
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Brownian Motion A Guide To Random Processes And Stochastic Calculus De Gruyter Textbook
ISBN: 9783110741254
3rd Edition
Authors: René L. Schilling, Björn Böttcher
Question Posted: