Let (left(B_{t} ight)_{t geqslant 0}) be a (mathrm{BM}^{d}) with transition semigroup (left(P_{t} ight)_{t geqslant 0}). Show, using
Question:
Let \(\left(B_{t}\right)_{t \geqslant 0}\) be a \(\mathrm{BM}^{d}\) with transition semigroup \(\left(P_{t}\right)_{t \geqslant 0}\). Show, using arguments similar to those in the proof of Proposition 7.3.f), that \((t, x, u) \mapsto P_{t} u(x)\) is continuous. As usual, we equip \([0, \infty) \times \mathbb{R}^{d} \times \mathcal{C}_{\infty}\left(\mathbb{R}^{d}\right)\) with the norm \(|t|+|x|+\|u\|_{\infty}\).
Data From Proposition 7.3
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Brownian Motion A Guide To Random Processes And Stochastic Calculus De Gruyter Textbook
ISBN: 9783110741254
3rd Edition
Authors: René L. Schilling, Björn Böttcher
Question Posted: