Let (left(B_{t} ight)_{t geqslant 0}) be a one-dimensional Brownian motion. Show that [operatorname{dim} B^{-1}(A) leqslant frac{1}{2}+frac{1}{2} operatorname{dim}
Question:
Let \(\left(B_{t}\right)_{t \geqslant 0}\) be a one-dimensional Brownian motion. Show that \[\operatorname{dim} B^{-1}(A) \leqslant \frac{1}{2}+\frac{1}{2} \operatorname{dim} A \quad \text { a.s. for all } A \in \mathscr{B}(\mathbb{R})\]
Apply Corollary 11.12 to \(W_{t}=\left(B_{t}, \beta_{t}\right)\) where \(\beta\) is a further, independent \(\mathrm{BM}^{1}\); observe that \(B^{-1}(A)=W^{-1}(A \times \mathbb{R})\).
Data From Corollary 11.12
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Brownian Motion A Guide To Random Processes And Stochastic Calculus De Gruyter Textbook
ISBN: 9783110741254
3rd Edition
Authors: René L. Schilling, Björn Böttcher
Question Posted: