Prove that in (mathbb{R}^{n}) all (ell^{p})-norms ((1 leqslant p leqslant infty)) are equivalent: [max _{1 leqslant j
Question:
Prove that in \(\mathbb{R}^{n}\) all \(\ell^{p}\)-norms \((1 \leqslant p \leqslant \infty)\) are equivalent:
\[\max _{1 \leqslant j \leqslant n}\left|x_{j}ight| \leqslant\left(\sum_{j=1}^{n}\left|x_{j}ight|^{p}ight)^{1 / p} \leqslant n^{1 / p} \max _{1 \leqslant j \leqslant n}\left|x_{j}ight| \quad \text { for all } x=\left(x_{1}, \ldots, x_{n}ight) \in \mathbb{R}^{n} .\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Brownian Motion A Guide To Random Processes And Stochastic Calculus De Gruyter Textbook
ISBN: 9783110741254
3rd Edition
Authors: René L. Schilling, Björn Böttcher
Question Posted: