Show that (F:=left{w in mathcal{C}_{(0)}[0,1]: sup _{q^{-1} leqslant c leqslant 1} sup _{0 leqslant r leqslant 1}|w(c

Question:

Show that \(F:=\left\{w \in \mathcal{C}_{(0)}[0,1]: \sup _{q^{-1} \leqslant c \leqslant 1} \sup _{0 \leqslant r \leqslant 1}|w(c r)-w(r)| \geqslant 1ight\}\) is for every \(q>1\) a closed subset of \(\mathcal{C}_{(0)}[0,1]\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: