Use Lemma 17.14 to show the following assertions: a) (lim _{n} mathbb{E}left(sup _{t leqslant T}left|X_{t}^{n}-X_{t}ight|^{2}ight)=0 Longrightarrow X^{n}

Question:

Use Lemma 17.14 to show the following assertions:

a) \(\lim _{n} \mathbb{E}\left(\sup _{t \leqslant T}\left|X_{t}^{n}-X_{t}ight|^{2}ight)=0 \Longrightarrow X^{n} \xrightarrow[n ightarrow \infty]{\text { ucp }} X\).

b) \(X^{n} \xrightarrow[n ightarrow \infty]{\text { ucp }} X, \quad Y^{n} \xrightarrow[n ightarrow \infty]{\text { ucp }} Y \Longrightarrow X^{n}+Y^{n} \xrightarrow[n ightarrow \infty]{\text { ucp }} X+Y\).

c) \(\mathcal{E}_{T}\) is ucp-dense in \(\mathcal{L}_{T, \text { loc }}^{2}(M)\) for any \(M \in \mathcal{M}_{T, \text { loc }}^{c}\).

Data From Leema 17.14

image text in transcribed


Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: