Use Lemma 17.14 to show the following assertions: a) (lim _{n} mathbb{E}left(sup _{t leqslant T}left|X_{t}^{n}-X_{t}ight|^{2}ight)=0 Longrightarrow X^{n}
Question:
Use Lemma 17.14 to show the following assertions:
a) \(\lim _{n} \mathbb{E}\left(\sup _{t \leqslant T}\left|X_{t}^{n}-X_{t}ight|^{2}ight)=0 \Longrightarrow X^{n} \xrightarrow[n ightarrow \infty]{\text { ucp }} X\).
b) \(X^{n} \xrightarrow[n ightarrow \infty]{\text { ucp }} X, \quad Y^{n} \xrightarrow[n ightarrow \infty]{\text { ucp }} Y \Longrightarrow X^{n}+Y^{n} \xrightarrow[n ightarrow \infty]{\text { ucp }} X+Y\).
c) \(\mathcal{E}_{T}\) is ucp-dense in \(\mathcal{L}_{T, \text { loc }}^{2}(M)\) for any \(M \in \mathcal{M}_{T, \text { loc }}^{c}\).
Data From Leema 17.14
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Brownian Motion A Guide To Random Processes And Stochastic Calculus De Gruyter Textbook
ISBN: 9783110741254
3rd Edition
Authors: René L. Schilling, Björn Böttcher
Question Posted: