We have seen in Lemma 19.27.a) that (operatorname{supp}left[d L_{t}^{0}(omega) ight] subsetleft{t geqslant 0: B_{t}(omega)=0 ight}) for almost
Question:
We have seen in Lemma 19.27.a) that \(\operatorname{supp}\left[d L_{t}^{0}(\omega)\right] \subset\left\{t \geqslant 0: B_{t}(\omega)=0\right\}\) for almost all \(\omega\). Show that \(\operatorname{supp}\left[d L_{t}^{a}(\omega)\right] \subset\left\{t \geqslant 0: B_{t}(\omega)=a\right\}\) for all \(\omega\) from a set \(\Omega_{0}\) with measure 1 such that \(\Omega_{0}\) does not depend on \(a\).
Data From 19.27 Lemma
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Brownian Motion A Guide To Random Processes And Stochastic Calculus De Gruyter Textbook
ISBN: 9783110741254
3rd Edition
Authors: René L. Schilling, Björn Böttcher
Question Posted: